• 任一棵树中,结点总数=度数*该度数对应的结点数+1

    • 子节点个数为n0即各个度对应的个数乘以度减一然后累加后加1
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15
      已知一棵度为m的树中:n1个度为1的结点,n2个度为2的结点,…,nm个度m的结点,问该树中共有多少个叶子结点?

      设该树的总结点数为n,则
      n=n0+n1+n2+…+nm
      又:
      n=分枝数+1=0xn0+1xn1+2xn2+…+mxnm
      由上述两式可得:
      n0=n2+2n3+…+(m-1)nm+1



      d
      n0 =( Σ n(i) * (i - 1)) + 1
      ​ i=1
      (其中,i ∈ Integer,d为树的度)
  • 树中边和结点的关系为:结点数=边数+1 -> 边数 = 结点数-1

哈夫曼树

  • 创建哈夫曼树并输出所有度为2的结点权值的和(huffman tree没有度为1的结点,度为0为叶子结点)
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    #include<iostream>

    using namespace std;

    struct huffman{
    int data;
    int parent;
    int lchild;
    int rchild;
    };

    int n, i, a, b, sum;
    //a,b是构造过程中的用于构造哈夫曼树的两个结点的下标,sum是计算所有度为2的结点的权值之和,n是叶子结点个数
    huffman huff[105];
    const int INF = 0x3f3f3f3f;

    int select(){
    //选出huff[1]到huff[i-1]中权值最小的且无父母结点的两个结点用以构造哈夫曼树
    int huffdata1 = INF, huffdata2 = INF;
    for(int j = 1; j <= i-1; j++){
    if(huff[j].parent == 0){
    if(huff[j].data < huffdata1){
    if(huff[j].data < huffdata2){
    switch(huffdata2 > huffdata1){
    //注意因为huff[j].data可能小于huffdata2,而huffdata1如果小于huffdata2,那么应该将huffdata2权值更新为huffdata1,因为每次要选出结点权值最小的两个结点
    case 1:
    huffdata2 = huffdata1;
    b = a;
    huffdata1 = huff[j].data;
    a = j;
    break;
    case 0:
    huffdata1 = huff[j].data;
    a = j;
    break;
    }
    }
    }
    else if(huff[j].data < huffdata2){
    huffdata2 = huff[j].data;
    b = j;
    }
    }
    }
    }

    int main(){
    cin >> n;
    for(i = 1; i <= n; i++){
    cin >> huff[i].data;
    huff[i].lchild = huff[i].rchild = huff[i].parent = 0;
    }
    for(i = n+1; i <= 2*n-1; i++) huff[i] = {0, 0, 0, 0};
    for(i = n+1; i <= 2*n-1; i++){
    select();
    sum += huff[a].data + huff[b].data;
    huff[i].data = huff[a].data + huff[b].data;
    huff[a].parent = huff[b].parent = i;
    huff[i].lchild = a, huff[i].rchild = b;
    }
    cout << sum;
    return 0;
    }

    模拟哈夫曼树构造过程:
    4 5 1 2 1 3 1 1
    1 1 2 2 3 4 5
    2 2 2 3 4 5
    2 3 4 4 5
    4 4 5 5
    5 5 8
    8 10
    18

二叉树

二叉排序树查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include<iostream>
#include<cstdlib>
#define M 20

using namespace std;


struct node
{
int data;
struct node *l,*r;
};

int k = 0;
int kk = 0;
node *bst = NULL;
node bstnode;

int insert(node* &bs, int k){

if(bs == NULL){
node* s = new node;
s -> data = k;
s -> l = NULL, s -> r = NULL;
bs = s;
}
else if(k < (bs) -> data){
insert(bs -> l, k);
}
else{
insert(bs -> r, k);
}

return 0;
}

node* search(node* bs, int k){
if(!bs) return NULL;
else if(bs -> data == k){
kk++;
return bs;
}
else if(bs -> data > k) kk++, search(bs -> l, k);
else if(bs -> data < k) kk++, search(bs -> r, k);
return bs;
}

int main(){
node *bs = NULL;
cin >> k;
while(1){
insert(bs, k);
cin >> k;
if(k == -1) break;
}
cin >> k;
search(bs, k);
cout << kk;
return 0;
}
------ The Happy Ending ------